今回は、線形常微分方程式の解き方についてのお話です。 弊学の1年生の物理の授業では、しばしば、習ってもいない微分方程式を、知っていて当たり前のものとして出題されることが多くあるらしいです。 そんなことはさておき、 今回は線形常微分方程式 ...
&=6ax+2b+2(3ax^2+2bx+c)+ax^3+bx^2+cx+d\\ &=ax^3+(6a+b)x^2+(6a+4b+c)x+(2b+2c+d) \end{aligned} だから,係数を比較して連立方程式を解くと, $${(a,b,c,d)=(1,-6,18,-48)}$$になるから, $${y_2=x^4/4-2x^3+9x^2-48x}$$ですね? ジマ:テクいww ...
数学は、大きく4つの分野に分けることができる。代数学、幾何学、解析学、そして応用だ。基幹理工学部 数学科の小薗英雄教授は、解析学、とくに微分方程式を専門としている。 「私の研究テーマは非線形偏微分方程式です。具体的には、流体の運動を ...
~住友ゴムとQuemix、結果の読み出しを迅速にする新手法を開発~ ...
『1冊でマスター大学の微分積分』の線形代数バージョンです。高校で扱わなくなってしまった行列は特に丁寧に計算を省かずに解説します。必ず扱う「掃き出し法」は、連立1次方程式を解いたり、行列式、行列のランク等を求めたりするときに大活躍する ...
住友ゴム工業は11月27日、Quemixとの共同研究の成果として、両社が新たに開発した、量子計算結果の読み出しを迅速かつ低コストで行う手法によって、量子コンピュータによる非線形方程式の計算を指数関数的に加速させることに成功したと発表した。
画像処理や建築など、線形代数は工学・工業分野で多く利用されています。しかし、微分積分とは違って、その効用を理解した上で線形代数を学んでいる人は多くないようです。本書では、行列や行列式、線形写像などを具体事例を交えてわかりやすく解説 ...
東京理科大学 近代科学資料館(館長:秋山仁氏)は、12月1日、「微分解析機再生プロジェクト 完成報告会」を開催した。国立情報学研究所、情報通信研究機構、東京理科大学が共同で、日本では唯一、東京理科大学に保存されている機械式アナログ ...
ビジネスパーソンの必須スキルである数学を、一からおさらいする「学び直し!ビジネス数学」特集(全8回)。最終回となる今回は、世界を変えた「数学史に残る方程式」ベスト7を紹介しよう。今日の経済社会を陰で支え、基礎を成している数学。人類の ...
Unityを学ぶための動画を集めたサイト「Unity Learning Materials」。ユニティ・テクノロジーズ・ジャパンの安原氏が、ゲーム制作に使う数学について解説しました。今回のテーマは「微分積分を利用してみよう」。例をもとに微分と積分の使い方について解説し ...
微分積分に関係する不思議な数「ネイピア数」 金融商品の金利には「単利」と「複利」があり、複利のほうが得だ。単利は預けた元本にのみ利息がつくのに対し、複利はついた利息が元本に組み込まれ、その元利合計に新たに利息がつくからだ。 元本100 ...